Depletion of neural stem cells from the subventricular zone of adult mouse brain using cytosine b‐Arabinofuranoside
نویسندگان
چکیده
INTRODUCTION Neural stem cells (NSCs) reside along the ventricular axis of the mammalian brain. They divide infrequently to maintain themselves and the down-stream progenitors. Due to the quiescent property of NSCs, attempts to deplete these cells using antimitotic agents such as cytosine b-Aarabinofuranoside (Ara-C) have not been successful. We hypothesized that implementing infusion gaps in Ara-C kill paradigms would recruit the quiescent NSCs and subsequently eliminate them from their niches in the subventricular zone (SVZ). METHODS We infused the right lateral ventricle of adult mice brain with 2% Ara-C using four different paradigms--1: one week; 2: two weeks; 3, 4: two weeks with an infusion gap of 6 and 12 h on day 7. Neurosphere assay (NSA), neural colony-forming cell assay (N-CFCA) and immunofluorescent staining were used to assess depletion of NSCs from the SVZ. RESULTS Neurosphere formation dramatically decreased in all paradigms immediately after Ara-C infusion. Reduction in neurosphere formation was more pronounced in the 3rd and 4th paradigms. Interestingly 1 week after Ara-C infusion, neurosphere formation recovered toward control values implying the presence of NSCs in the harvested SVZ tissue. Unexpectedly, N-CFCA in the 3rd paradigm, as one of the most effective paradigms, did not result in formation of NSC-derived colonies (colonies >2 mm) even from SVZs harvested 1 week after completion of Ara-C infusion. However, formation of big colonies with serial passaging capability, again confirmed the presence of NSCs. CONCLUSIONS Overall, these data suggest Ara-C kill paradigms with infusion gaps deplete NSCs in the SVZ more efficiently but the niches would repopulate even after the most vigorous kill paradigm used in this study.
منابع مشابه
Isolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملThe adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C.
The subependymal zone (SEZ) of the lateral ventricles of the adult mouse brain hosts neurogenesis from a neural stem cell population with the morphology of astrocytes (termed type-B cells). Tenascin-C is a large extracellular matrix glycoprotein present in the SEZ that has been shown to regulate the development of embryonic neural stem cells and the proliferation and migration of early postnata...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملReaction of subventricular zone stem cells to the induction of experimental autoimmue encephalomyelitis in mouse
Introduction: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease. In the present study, we investigated the response of subventricular zone (SVZ) adult stem cells in the experimental autoimmune encephalomyelitis (EAE), an animal model of MS, and also the differentiation fate of these stem cells. Methods: Mice were immunized with MOG peptide emulsified in complete Freund'...
متن کامل